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Neural Network Prediction and Control of Three-Dimensional
Unsteady Separated Flowfields
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Using artificial neural networks (ANN), one approach to the control of unsteady aerodynamics is to develop
real-time models which, given the actuator contrel signals, anticipate the unsteady flowfield wing interactions.
These models of flow-wing interactions can then be used as the foundation upon which to develop adaptive
control systems. This article supports this concept using three-dimensional unsteady surface pressure topologies
collected from a rectangular wing pitched through the static stall angle at seven nondimensional pitch rates. A
neural network model of the unsteady surface pressures was developed by training an ANN on five of these
seven data sets. Following training, the only inputs required for the model were instantaneous angle of attack
and angular velocity. These network-predicted unsteady surface pressure time histories were compared directly
to the experimental pressure data. Then, a neural network controller for the wing motion history was developed
using the pressure model. The results indicated that the controller actuator signals reliably yielded motion
histories that generated the measured lift to drag ratio (L/D) time histories. Further, the results suggest that
for any desired L/D requirement optimized motion histories can be generated.

Nomenclature

= drag coefficient

lift coefficient

one-quarter-chord moment coefficient
normal force coefficient

tangential force coefficient

wing chord length, m

pressure coefficient

pitch rate, rad/s

reduced frequency, wfc/U.

time, s

nondimensional time, t*U../c

test section velocity, m/s
nondimensional pitch rate, c¢(da/dt)/U.,
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Introduction

ERFORMANCE requirements for the next generation

of aircraft include 1) low radar observability and 2) ma-
neuverability at elevated angles of attack better than or equal
to that of existing aircraft.! However, aircraft geometries that
provide the required low radar profiles typically do so at the
expense of aerodynamic performance.? In part, because of
these requirements, research geared toward understanding
and controlling unsteady separated flowfields continues to be

Presented as Paper 94-0532 at the AIAA 32nd Aerospace Sciences
Meeting and Exhibit, Reno, NV, Jan. 10-13, 1994; received Feb. 1,
1994; revision received April 20, 1995; accepted for publication April
28, 1995. This paper is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.

*Faculty Research Associate, Department of Mechanical Engi-
neering; currently at David Taylor Model Basin, Code 54, Carderock
Divison, NSWC, Bethesda, MD 20084-5000. Member ATIAA.

tUnsteady Aerodynamics Task Manager, Frank J. Seiler Research
Laboratory. Member AIAA.

iProfessor, Department of Aerospace Engineering Sciences.
Member ATIAA.

1213

strongly motivated by potential enhancements to aircraft per-
formance. Moreover, unsteady aerodynamic loads generated
during ““dynamic stall” play a critical role in determining both
the mechanical life span and performance of helicopter rotors
as well as wind turbine blades. Control of this phenomenon,
however, will require both an understanding of the unsteady
flow conditions that can be produced as well as providing
mechanisms for prescribing the ensuing flow-wing interac-
tions. Further, these capabilities must be realized in real-time.

Aerodynamic bodies or lifting surfaces subjected to time-
dependent unsteady motion histories elicit three-dimensional
unsteady separated flowfields that are characterized by en-
ergetic, large-scale vortices. For constant rate pitch-up mo-
tions, spanwise nonuniformities in vortex structure, surface
pressure topology, and aerodynamic forces have been exten-
sively characterized.?-# Surface pressure nonuniformity and
time dependency have also been shown for the dynamic reat-
tachment of unsteady separated flowfields.*~'> Experimen-
tal studies have documented the commonplace occurrence
of unsteady separated flows on wind turbine blades.!*>!* Dy-
namic stall effects on the retreating blades of helicopter ro-
tors as well as on straight wings have been extensively summa-
rized.'3-1® Similarly, the flowfields generated by delta wings
at high angles of attack have been reviewed.!*2¢

Despite extensive study, unsteady separated flows remain
a difficult phenomenon to thoroughly understand and char-
acterize. However, across an extremely broad range of pa-
rameters both steady and unsteady aerodynamics can be char-
acterized using neural networks. Neural networks can accurately
predict both steady and unsteady surface pressures as well as
aerodynamic force and moments over short time scales.?!' =%’
These models mathematically capture the essential fluid me-
chanics.*~?” Neural networks also have successfully modeled
the time-dependent evolution of unsteady flowfield wing in-
teractions for both dynamic stall and dynamic reattach-
ment.?*2 Our extension of this work used a time-dependent
neural network model that provided real-time, accurate pre-
dictions of the future unsteady flowfield wing interactions.
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Note, the neural network model was designed to be high gain
with respect to the actuator control signals. This model was
then used to develop a neural network controller for the wing
motion actuator signals.

Methods

Unsteady Surface Pressure Measurement

Surface pressure measurements were performed in the Frank
J. Seiler 0.91 m X 0.91 m low-speed wind tunnel located at
the U.S. Air Force Academy. A rectangular planform wing
having a NACA 0015 cross section and a semiaspect ratio of
2.0 was bounded at the root by a circular splitter plate. The
basic wing had a span of (.28 m and was equipped, on the
outboard end, to accept NACA 0015 tip extensions. Tip ex-
tensions were configured such that the extended wing plan-
form remained rectangular. For all tests, wind-tunnel test
section velocity was held constant at 9.14 m/s, corresponding
to a chord Reynolds number of 6.9 x 10

Inside the hollow wing, mounted close to the wing surface,
15 Endevco 8507-2 miniature pressure transducers were in-
stalled. The 15 transducers were located along the chordline
between 0% chord, the leading edge, and 90% chord. Pres-
sure transducer placement is shown in Fig. 1a. Using the
wingtip extensions, these 15 pressure transducers were moved
to 3 spanwise positions located at 0% span (the wing root),
37.5% span, and 80% span near the wingtip. This is shown
schematically in Fig. 1b.

Starting at O deg, the wing/splitter plate configuration was
pitched through the static stall angle at constant rate about
the wing quarter chord to a final angle of 60 deg. Pitch rates
of 34, 68, 172, 258, 344, 516, and 688 deg/s were employed,
corresponding to a* of 0.01, 0.02, 0.05, 0.075, 0.10, 0.15,
and 0.20. Pitch angle histories for these records as well as for
a sinusoidal pitch motion with frequency 4.77 Hz, k = 0.25,
are shown in Fig. 2.

A total of 24 combinations of a*, k, and spanwise pressure
port location were collected. Signals originating from the pres-
sure transducers were sampled at 500 Hz. This yielded surface
pressure records comprised of 200 samples per transducer for
nondimensional pitch rates of 0.05 and above. The surface
pressure records for nondimensional pitch rates of 0.01 and
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Fig. 1 Spanwise and chordwise locations of the pressure transducers:
a) the locations of the 15 pressure transducers along the chord for a

side view of the wing and b) a planform view of the three spanwise
pressure port locations.
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Fig. 2 Wing pitch angle histories for seven ramp pitch motions and

for one harmonic motion history.

0.02 were comprised of 1000 samples per transducer. For each
record 20 consecutive wing pitch motions were sampled and
ensemble averaged to arrive at the final surface pressure data
set. A detailed explanation of the experimental methods has
previously been provided.®”

Neural Network Model

For all nondimensional pitch rates, prominent temporal and
spanwise variations in the surface pressure topology were ap-
parent. To model these characteristics, a simplified represen-
tation of the full three-dimensional surface pressure topology
was assumed. The unsteady surface pressure records recorded
at span locations 0% (the wing root), 37.5% span, and at
80% span, near the wingtip were modeled. Importantly, these
span locations are representative of the flow-wing interactions
encountered over the full wing.

Figure 3 shows a representative set of experimental data
obtained for a single combination of pitch rate and span lo-
cation. The relative magnitudes of the pressure traces are
accurate, but the traces have been offset to ease viewing. Each
pressure signature corresponds to the data record obtained
from a single pressure port location, leading edge at the bot-
tom of the figure, and 90% chord at the top. As shown below
the figure, each of the pressure signatures, in this record, was
comprised of 200 data samples.

To model these data a neural network technique developed
for modeling time-dependent phenomena was employed. The
neural network architecture is shown schematically in Fig. 4.
A standard sigmoidal activation function, y = 1/(1 + e¢~¥),
was used for all units. The inputs to the network were the
time-varying unsteady motion history comprised of the in-
stantaneous angle of attack a and the angular velocity de/dt.
The initial conditions for each of the surface pressure coef-
ficients (c,,—c,4s), at all three span locations, were also pro-
vided. The targeted outputs were the pressure values at time
(r + Ar) for each of the 15 pressure taps located at each of
three span locations to be modeled. Subsequently, the time
(r + Af) network predictions, for each of the surface pres-
sures, were fed back as input to the network. Thus, the input
layer was composed of 47 units. Both hidden layers were
composed of 32 units and the output layer was composed of
45 units.

To train the model a subset of the available data records
was used to “teach” the neural network the relationship be-
tween time-dependent motion histories and the temporal ev-
olution of the unsteady surface pressure topologies. The model
was trained using only five of the eight data records, corre-
sponding to nondimensional pitch rates of 0.01, 0.02, 0.05,
0.10, and 0.20. Nondimensional pitch rates of 0.075, 0.15,
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Fig. 3 Raw surface pressure data for a single pitch history, at a single span location, is shown on the left. The data format is shown on the

right. Each of the 15 pressure traces was comprised of 200 data points.
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Fig. 4 Schematic diagram of the neural network. The input was the
pitch angle «, the angular velocity da/d¢, and the surface pressure
initial conditions at time ¢,. Subsequently, the time (f + Af) network
predictions, for each of the pressure values, were fed back as the input
to the network.

and k = 0.25 were not presented to the model during training.
Initial weights were set randomly between —0.25 and 0.25.
The data sets were presented randomly with the stipulation
that each data set be presented an equal number of times.
And, the model was trained using a time-series algorithm
based on back-propagation.

In addition, based on the pitch history and the initial con-
ditions at time #,, the network was trained to predict the
aerodynamic forces and moments. In this case, an additional
15 output units were added bringing the total number of out-
put units to 60. Again, the time (¢ + Ar) network predictions,
for each of the surface pressures, were fed back as the input
to the network. However, the targeted outputs, in this case,
included the aerodynamic coefficients for each of the three
span locations modeled. The operational characteristics of the
neural network are shown schematically in Fig. 5.

Neural Network Control

Using the operational neural network model as the plant
(Fig. 5), two approaches were explored for controlling the
aerodynamic forces and moments. The first approach con-
sisted of optimizing L/D as a function of time by prescribing
the wing motion history. The second approach integrated a
neural network controller, for the wing motion actuator con-
trol signals «(f) and da/df, with the plant such that time-
dependent unsteady L/D histories could be commanded.

L/D(t) was optimized using the following simple approach.
The wing motion history was broken into 5-deg increments
between 0-60 deg angle of attack. Within each 5-deg incre-
ment, the motion history was constrained to nondimensional
pitch rates a* between 0.01-0.20, inclusive, which were in-
cremented in 0.01 steps. With the wing momentarily at each
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Fig. 5 Operational neural network model. For each motion history,
the model yielded the time-dependent unsteady surface pressure to-
pologies. (Not shown are the corresponding aerodynamic forces and
moments.)

of the 5-deg increments, the instantaneous value of L/D was
determined. The pitch rate yielding the largest instantaneous
L/D was retained. This pitch rate defined the wing motion
history for that 5-deg segment. By iterating this process, a
composite pitch history was formed that moved the wing from
0- to 60-deg angle of attack in one continuous motion. The
final optimized wing motion history was, thus, comprised of
ramp motions having varying pitch rates. The effects of di-
viding the pitch history into increments of 2, 4, 6, 8, 10, and
12 deg were also tested. The results for such motion histories
are described in detail later.

The neural network controller is shown schematically in
Fig. 6. The input layer consisted of six controller inputs. One
controller input was the commanded L/D(¢) response. Other
controller inputs were as follows. The control signal for angle
of attack was fed back to provide state information about the
last position of the wing. From the plant, surface pressures
from the three pressure ports nearest the leading edge and
L/D(t) were fed back. The surface pressure readings provided
a measure of the flow-wing interactions, while L/D(t) pro-
vided both error and state information relative to the com-
manded response. Both hidden layers were comprised of 12
units and the output layer comprised 1 unit. The controller
output was the wing motion history «(f) as well as da/dt cal-
culated from the angle-of-attack history.
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Fig. 6 Neural network controller. The commanded input was the
desired time-dependent L/D response. The output was the actuator
control signals (instantaneous angle of attack and angular velocity).

Consistent with the network surface pressure model de-
scribed previously, a subset of the available data records was
used to train the neural network controller. However, in this
case, the controller was to “learn” the inverse relationship
between L/D(#) and time-dependent motion histories. The
controller was trained using five of the seven data records,
corresponding to nondimensional pitch rates of 0.01, 0.02,
0.05, 0.10, and 0.20. Nondimensional pitch rates of 0.075 and
0.15 were not presented to the controller during training.

Results

Unsteady Surface Pressure Distributions

As shown in Fig. 5, for each motion history, the neural
network model yielded the unsteady surface pressures. Since
the only inputs to the model were the instantaneous angle of
attack and the angular velocity, 200 future three-dimensional
surface pressure topologies were predicted by the network
for nondimensional pitch rates above 0.05 as well as for har-
monic motions. Similarly, 1000 future three-dimensional sur-
face pressure topologies were predicted for nondimensional
pitch rates of 0.01 and 0.02. The performance of the model
was verified in two ways; quantitatively by calculating the
deviation between the predicted values and the measured
data, and graphically by coplotting the experimentally mea-
sured surface pressures against the predicted surface pressure
topologies. In all figures, time-varying surface pressure at port
1, the leading edge, is at the bottom of the figure. Time-
varying surface pressure at port 15, 90% chord, is at the top.
The ordinate is the surface pressure and the abscissa is non-
dimensional time. The measured surface pressure data are
shown as solid lines and the surface pressures predicted via
the neural network as dashed lines. The relative surface pres-
sure magnitudes are accurate and increase towards the bottom
of the figure. Note, the plots have been offset to ease com-
parison.

The analysis for a nondimensional pitch rate of 0.2, at 80%
span, is shown in Fig. 7. Near the wingtip, the model accu-
rately predicted both the surface pressure decreases as well
as the time and magnitude of suction peak occurrence. Over-
all, as measured by an average deviation over time, the neural
network accurately predicted the magnitudes of the surface
pressures to within 1% of the experimental data during lead-
ing-edge vortex generation and convection; and, the magni-
tudes to within 5-10% following the attainment of constant
pressures at 60-deg angle of attack. Similar results were ob-
tained for the other span locations.

Figure 8 shows a similar plot for a nondimensional pitch
rate of 0.15 at the 37.5% span location. This record was not
used during training. The model predicted the suction peak
time of occurrence for all port locations, but peak magnitudes
were underpredicted. These effects were more pronounced
near the wing trailing edge. Unsteady surface pressure mag-
nitudes were predicted to within 5% of the experimental data
for port locations near the leading edge and within 10% for
port locations near the trailing edge. Again, similar results
were obtained for the other span locations.
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Fig. 7 Unsteady surface pressure histories for nondimensional pitch
rate 0.20 at 80% span (a training case). Measured surface pressure
data are the solid lines and predicted surface pressures are the dashed
lines. Port 1, the leading edge, is at the bottom of the figure and port
15, near the trailing edge of the wing, is at the top.
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Fig. 8 Unsteady surface pressure histories for a pitch rate of 0.15 at
37.5% span (a novel case). Measured surface pressure data are the
solid lines and predicted surface pressures are the dashed lines. Port
1, the leading edge, is at the bottom of the figure and port 15, near
the trailing edge of the wing, is at the top.

Figure 9 shows the results for two complete cycles of a
harmonic motion history. Mean pitch angle was 10 deg, os-
cillation amplitude was 10 deg, and the reduced frequency
was 0.25. Nondimensional time 0.0 corresponded to a pitch
angle of 20 deg. Initial surface pressure magnitudes, during
the pitch-down phase of the motion between nondimensional
times 0.0-6.0, were underpredicted by the network. During
this phase of the motion the predicted times of occurrence
also lead the measured data. As the wing reaches 0 deg, at
nondimensional time 6.0, the network predictions converge
to the measured values. During the sinusoidal pitch-up, be-
tween nondimensional times 6.0—12.0, the surface pressures
are accurately predicted except for minor surface pressure
fluctuations. However, the predicted time of suction peak
occurrence slightly leads the measured data. Similar results
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Fig. 9 Unsteady surface pressure histories for a harmonic motion
history, k = 0.25 (a novel case). Measured surface pressure data are
the solid lines and predicted surface pressures are the dashed lines.
Port 1, the leading edge, is at the bottom of the figure and port 15,
near the trailing edge of the wing, is at the top.
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Fig. 10 Aerodynamic coefficients for a nondimensional pitch rate of
0.2 at 37.5% span. Solid traces represent the measured data and
dashed traces correspond to the predicted data.

were obtained both at the wing root, 0% span, and near the
wingtip at 80% span.

Aerodynamic Coefficients

The graphical analysis for a nondimensional pitch rate of
0.2, at the 37.5% span location, is shown in Fig. 10. The
model accurately predicts the force and moment coefficients
both before and after attainment of maximum magnitudes.
In all cases, the time of maximum force and moment are
accurately predicted. For C,, C,, and C,,, though, maximum
magnitude was overpredicted following the attainment of a
constant 60-deg angle of attack. These results were consistent
with the overprediction of the surface pressure distributions
shown in Fig. 7. Quantitatively, the neural network predicted
the aerodynamic coefficients to within 1% of the experimental
data during leading-edge vortex generation and convection
and to within 5-10% with the wing at a constant 60-deg angle

of attack. Consistent results were obtained at both 0 and 80%
span.

Figure 11 is for a nondimensional pitch rate of 0.15 at the
37.5% span location. This record was not used during training.
For these conditions, the time of occurrence of peak mag-
nitude was accurately predicted for C,, C,, and C,,. However,
peak magnitude was underpredicted for C, and C,,.. Unsteady
aerodynamic force and moment magnitudes were predicted
to within 5% of the experimental data. Again, similar results
were obtained for the remaining span locations.

The analysis for the harmonic motion history is shown in
Fig. 12. For this set of conditions, the time of occurrence of
both the aerodynamic forces and moments was accurately
predicted. However, lift and normal force magnitudes were
both slightly underpredicted relative to the measured data.
The magnitude of C,, C,, and C,, were closely predicted. As
a whole, the neural network accurately predicted the aero-
dynamic coefficient magnitudes to within 5% of the experi-
mental data throughout the motion history. Consistent results
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Fig. 11 Aerodynamic coefficients for a nondimensional pitch rate of
0.15 at the 37.5% span (a novel case). Solid traces represent the
measured data and dashed traces correspond to the predicted data.
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Fig. 12 Aerodynamic coefficients for a harmonic motion history, k
= 0.25 (a novel case). Solid traces represent the measured data and
dashed traces correspond to the predicted data.
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were obtained for the remaining two records. Further, con-
sistent results were obtained for other harmonic motion his-
tories.

Neural Network Control

The results obtained for the time-dependent optimization
of L/D are shown in Figs. 13 and 14. Figure 13 shows the
calculated optimal pitch history. The optimized motion his-
tory is shown as the solid squares. For comparison, nondi-
mensional pitch rates of 0.01, 0.10, and 0.20 are also shown.
Between 0-10 deg the optimized motion history consists of
a nondimensional pitch rate of 0.20. At 10 deg, just before
static stall, the wing motion history slowed suddenly and per-
sisted over the next 5 deg. Following this, the nondimensional
pitch rate increased. Results consistent with these were ob-
tained for the other pitch angle increments tested, 2, 4, 6, 8,
10, and 12 deg. In all cases, the wing motion history, up to
roughly static stall, was characterized by a high nondimen-
sional pitch rate. This was then followed by a decreased pitch
rate through static stall. In all cases, this brief deceleration
phase was followed shortly thereafter by a higher pitch rate.

Figure 14 shows the drag polar generated using the motion
history shown in Fig. 13. The lift coefficient is shown on the
abscissa and the drag coefficient on the ordinate. The cal-
culated drag polar is shown as the solid squares. For com-
parison, nondimensional pitch rates of 0.01, 0.10, and 0.20
are also shown. The optimized drag polar follows the lift and
drag characteristics of a nondimensional pitch rate of 0.20 up
to a C, value of 2.5 and a C, value of approximately 1.0.
Following this, the optimized drag polar shows a slight de-
crease in lift and a pronounced decrease in drag. The opti-
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Fig. 13 Wing motion history for an optimized L/D response. The
calculated motion histery is shown as the solid squares. For compar-
ison, nondimensional pitch rates of 0.01, 0.10, and 0.20 are also shown.
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Fig. 14 L/D response, plotted as C, vs C,, for the optimized wing
motion history. The controlled motion history and corresponding drag
polar is shown as the solid squares. For comparison, the drag polar
for nondimensional pitch rates of 0.01, 0.10, and 0.20 are also shown.
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Fig. 15 L/D response for a novel nondimensional pitch rate of 0.15
(experimental data) is shown relative to the L/D response obtained
using the neural network controller (solid squares).

mized L/D profile consistently showed a 20-40% drag de-
crease and less than a 10% loss in lift compared to the drag
polar for a nondimensional pitch rate of 0.20. Although these
results remain to be verified experimentally, the accuracy of
the model suggests that the experimental data will verify these
findings. Further, these results suggest that optimized motion
histories can be determined in the manner described.

To evaluate controller performance, the controller was
commanded to generate a specified drag polar. Provided with
a required time-dependent L/D history, the controller accu-
rately generated the necessary wing motion profile. Figure 15
shows the results for a nondimensional pitch rate of 0.15. This
record was not used during training. In this case, controller
errors were most evident immediately following attainment
of maximum lift. However, overall characteristics of the de-
sired drag polar were apparent. And, as was expected, the
motion history generated by the controller strongly resembled
anondimensional pitch rate of 0.15. Overall, consistent results
were obtained both for data sets upon which the neural net-
work controller had been trained as well as for novel cases.

Discussion

Unsteady Surface Pressure Distributions

Unsteady surface pressure topologies were obtained from
a wing pitched through the static stall angle. All records showed
extensive alterations in the three-dimensional unsteady sep-
arated flowfield as a function of both nondimensional pitch
rate and span location. A neural network model was devel-
oped to predict these time-varying unsteady surface pressure
topologies based solely on the instantaneous angle of attack
and angular velocity.

For data sets used in training the neural network, the results
clearly indicated that the neural network accurately predicted
the evolution of the unsteady surface pressures. The devel-
opment of the suction peak as well as the suction peak reversal
were accurately modeled. Overall, the neural network model
was shown to accurately predict three-dimensional unsteady
surface pressure topologies and time histories across a wide
range of nondimensional pitch rates. Previous work has shown
that single case realizations also can be modeled in this fash-
ion.%’

Similar results were obtained for cases that were not used
in training the original neural network model. With no ad-
ditional training of the neural network, both suction peak
magnitudes and suction peak times of occurrence were gen-
erally well predicted. However, model fidelity was decreased
for predictions of harmonic motion histories relative to con-
stant rate pitch motions. Nevertheless, given that the model
was trained on only constant rate motions, the capability to
generalize to harmonic motion histories was quite remarka-
ble. Overall, the results indicated that neural network models
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Fig. 16 Existing, operational closed-loop controller is shown sche-
matically. Given a commanded unsteady L/D requirement, the con-
troller generates the corresponding wing meotion history.

can accurately extrapolate to both other constant pitch rates
as well as arbitrary motion histories.

Clearly, highly accurate, real-time models of unsteady sep-
arated flowfields can be developed using neural networks.
Further, the results suggest that neural network models can
be developed that accurately describe not only constant pitch
rates, but harmonic motion histories across extended ranges
of k, mean pitch angle, and oscillation amplitude.*

Aerodynamic Coefficients

Again, the results showed that, given only limited training
data, a single neural network model can be developed that
operates effectively across a broad parameter space. The re-
sults showed that the model predicted the unsteady aerody-
namic coefficient magnitudes to within 5% of the experimen-
tal data. Significantly, consistent results were obtained for the
training sets as well as for generalization to other constant
pitch rates and to harmonic motion histories.

Neural Network Control

Using a neural network model of the surface pressure to-
pologies and aerodynamic coefficients, two approaches were
explored for controlling the aerodynamic forces and moments
generated.

As shown, by pitching the wing rapidly through the first 10
deg of the motion profile, decreasing the pitch rate through
static stall, and then again increasing the pitch rate, an op-
timized drag polar was obtained. The optimum drag polar
identified using the neural network model was consistent with
existing knowledge of unsteady vorticity dynamics. The high
Initial pitch rate maximizes vorticity generation and accu-
mulation, and capitalizes on viscous flow delay to minimize
boundary-layer separation.”® Subsequently, boundary-layer
separation begins to interrupt vorticity generation, and vor-
ticity accumulation shows significantly less sensitivity to pitch
motion. Correspondingly, pitching decelerates dramatically
to minimize the drag component of the normal force vector
while simultaneously maximizing the lift component. Finally,
the leading-edge vortex attains sufficient size to experience
significant convective influence imposed by the freestream
near the wing.* To attenuate the freestream influence, pitch-
ing accelerates to enable the wing to more effectively shield
the leading-edge vortex from the freestream. This, in turn,
delays vortex shedding, prolonging lift and delaying drag rise.
As shown in Fig. 14, the drag polar consistently showed a
decreased drag coefficient of between 20-40% , while showing
less than a 10% loss in lift. Significantly, consistent results
were obtained for all the optimized motion histories calcu-
lated.

For the controller, preliminary results showed that com-
manded control of L/D, as a function of time, across a wide
range of unsteady motion histories was possible. The results

indicated that motion histories for which the network had
been trained were reasonably well predicted. Further, con-
troller accuracy for the novel cases tested was comparable to
the performance obtained for the training cases. In all cases,
a major reason for the error levels obtained appears to be
that the quantity L/D is extremely sensitive to drag at low
angles of attack. When the drag coefficient value is close to
0, the controller performance suffers from even very smail
errors in the predicted drag term. One approach to alleviate
this problem would be to train the original network surface
pressure model to predict the quantity L/D directly. The ex-
isting closed-loop control system is shown schematically in
Fig. 16.

Conclusions

Control of unsteady aerodynamics could dramatically en-
hance aircraft agility, improve helicopter rotor performance,
and significantly extend the lifespan of wind turbine blades.
However, to enable control, real-time models of unsteady
flow conditions must be realized and integrated control sys-
tems developed. To this end, a neural network was used, in
real-time, to anticipate unsteady flowfield wing interactions
for a rectangular wing. Operationally, a “view” of unsteady
flowfield wing interactions could be obtained for any time
period over which the motion history was a defined function
(a few milliseconds to tens of seconds). This model was then
used as the plant to develop a neural network controller for
the wing motion actuator control signals «(f) and da/dz. As
shown, the neural network controller provided closed-loop
control of the wing motion history. Given a commanded time-
dependent L/D history, the controller generated a suitable
wing motion profile. Further, the results showed that opti-
mized wing motion histories could be determined.

Results such as these provide a number of exciting aero-
dynamic control opportunities. Accurate real-time models of
unsteady separated flowfield wing interactions can be devel-
oped using neural networks. A single model that describes
not only constant rate pitch motions, but harmonic motions
across an extended range of k, mean pitch angles, and oscil-
lation amplitudes appears feasible.? As shown herein, such
a neural network plant model would, in turn, provide a unique
opportunity for addressing the integration of sensors, actua-
tors, controllers, and time lags into adaptive control systems.
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